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ABSTRACT 

Numerous researches aim at understanding the high brain 
functions such as memory or decision making by analysing 
the activity of brain neurons. This activity corresponds to 
sequences of electrical potentials and thus can be viewed as 
a point processes. In this paper, we propose a method to 
measure the regularity level of event occurrences in point 
processes. Based on the analysis of the so-called density 
histogram, the proposed approach has the advantage of 
providing a decision to classify the process into one of the 
three following distinct classes: the “regular” processes, the 
“irregular” processes and the “bursting” processes. To 
illustrate the efficiency of the method, we first carry out a 
comparative study based on synthetic data. Then, the 
algorithm is tested in the framework of neurosciences for the 
classification of neurons according to their activity. 
 

Index Terms— Point process, Poisson process, density 
histogram, goodness-of-fit, neuron classification. 
 

1. INTRODUCTION 

Analysing the temporal distribution of events is of interest in 
various frameworks such as queuing traffic in 
communication [7], data compression [6] or neurosciences 
[3] [5]. Indeed, neurons communicate by means of electrical 
potentials, the so-called spikes. A sequence of spikes, called 
a spike train, can be viewed as a stochastic point process and 
is usually assumed to be a Poisson process [2]. The 
information is embedded in the temporal arrangement of the 
spikes [2]. A neuron has one of the following three 
activities: 
• Regular activity: the spikes are produced pseudo-

periodically. Cf. figure 2.a). 
• Irregular activity: the spikes are produced randomly, 

according to a Poisson law [2]. Cf. figure 2.b). 
• Bursting activity: the neuron produces packs of spikes, 

the so-called bursts. Cf. figure 2.c). 

In this paper, we focus our attention on the classification 
issue. More particularly, we develop a method that allows to 
automatically make a decision about the activity that is 
displayed by such point processes. 

Let us consider a stochastic point process in which each 
event is characterized by its time occurrence )(kt . The 

temporal arrangement of the events can be analyzed with 
various tools such as the number of events per second or the 
autocorrelogram of the observed point process for instance 
[2]. However, these techniques are not well-suited for the 
classification of point processes since they do not encode the 
regularity features on a reduced number of parameters. For 
this reason, we analyse the temporal arrangement of the 
events from the time intervals between two successive 
events. To this end, we define the Inter-Event Interval (IEI) 
process as follows: 

)1()()( −−= ktktkIEI . (1) 

By counting the number of intervals )(kIEI  falling in time 

bins, we obtained the so-called histogram of the IEI process 
[2]. The IEI histogram corresponds to an estimation of the 
probability density function (PDF) related to the inter-event 
intervals. Then, it emphasizes the researched regularity 
features in the point process. As an example, an IEI 
histogram that fits a narrow band Gaussian PDF is typical of 
a regular appearance of events [2]. Thus, goodness-of-fit 
based methods exploiting the IEI histogram have been 
developed to characterize the distribution of event time 
occurrences [1] [5] [7]. However, such methods remain 
questionable. Indeed, choosing the number of bins to 
estimate the IEI histogram is a delicate issue and affects the 
shape of the obtained IEI histogram. Thereby, if the number 
of bins is not well tuned, the IEI histogram can exhibit 
similar shapes for different kind of activities [3]. 

As an alternative, we propose to take advantage of the so-
called density histogram [3]. This latter provides a robust 
representation of the temporal distribution of events by 
taking into account the mean IEIm of the IEI defined as 
follows: 
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The density histogram )(λd  is defined as the probability to 

have λ  events in an interval of length IEIm , where λ  is an 
integer. In practice, given the process )(kt , estimating the 

density histogram consists in first evaluating the number of 
events in each frame i of length IEIm  as follows: 
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where { }.card  denotes the cardinal. 

Then, for each integer ...,1,0=λ , the density )(λd  is 

estimated as the number of frames which contains λ  events 
and normalized by the total number of frames. 

 

 
Figure 1: Example of event counting a) and  

the related density histogram b). 

Let us consider the example in figure 1 a). The point process 
is divided into eleven frames. One frame contains zero 
event, five frames contain one event, four frames contain 
two events and one frame contains three events. The 
resulting density histogram is illustrated in figure 1 b). 

The temporal distribution of events in stochastic point 
processes will lead to specific shapes for the density 
histogram. More particularly, let us consider the three kinds 
of activity: 
• Regular activity: the probability to have one event in a 

frame is significantly higher than the other probabilities. 
The density histogram tends to be symmetric with mean 
equal to one. 

• Irregular activity: the probability to obtain 0, 1 or 2 
events in a frame will not be significantly different. The 
density histogram tends to fit a Poisson PDF with mean 
equal to one. 

• Bursting activity: the probability to have 0 event in a 
frame is significantly higher than the other probabilities. 
The density histogram tends to fit a Poisson PDF with 
mean less than one. 

Figure 2 provides examples of density histograms obtained 
from real spike trains. 

In the neurosciences, Kaneoke et al. [3] have previously 
exploited the density histogram to detect bursts in spike 
trains. In their method, bursts are detected if the two 
following conditions are satisfied: 

• The IEI histogram is sufficiently non symmetric, i.e. the 
activity is not regular. This condition is checked by 
comparing the skewness of the IEI histogram to an a 
priori threshold. 

• The density histogram fits a Poisson PDF with mean 
equal to 1. A Chi square test is used to check this 
condition. 

 
Figure 2: Examples of spike trains (left) and their 

corresponding density histograms (right) in different cases; 
a) regular activity, b) irregular activity, c) bursting activity. 
These signals have been recorded on sleeping rats in deep 

brain structures, the so-called basal ganglia. 

 

However, such an approach does not allow to discriminate 
regular activities and irregular activities. In addition, it has 
the following drawbacks. Firstly, tuning the threshold for the 
skewness in the first condition is a key point of the method. 
Secondly, choosing the number of bins for the IEI histogram 
is a difficult task. Moreover, this choice affects the 
estimation of the skewness and thus has to be taken into 
account to adjust the threshold. Finally, it should be noted 
that the authors did not provide sufficient practical detail on 
the implementation of their method. 

In this paper, we extend the approach of Kaneoke et al. [3]. 
The advantages of the proposed method are threefold. 
Firstly, no parameter such as the number of bins or a 
threshold has to be tuned. Secondly, no statistic such as the 
skewness has to be estimated, avoiding estimation and 
decision errors. Thirdly, while Kaneoke’s method is oriented 
toward the detection of bursting activity, we propose a one-
step based algorithm that provides a decision according to 
which the stochastic point process can be classified into 
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three distinct classes: regular activity, irregular activity and 
bursting activity. 

The paper is organized as follows: in section 2, we present 
the proposed classification method, in section 3, a 
comparative study on synthetic data is carried out and 
simulation results based on real data are provided. 
 

2. THE CLASSIFICATION METHOD 

In this section, we present a simple method to classify 
stochastic point process according to their activity. The 
approach is based on the comparison of the density 
histogram )(λd  to a reference density function )(λxp . 

Given the different possible shapes of the density histogram 
shown in figure 2, this reference PDF will be chosen for 
each activity hypothesis as follows: 
• Regular hypothesis: The density histogram is expected to 

be symmetric with mean 1 and is thus compared to a 
Gaussian law )(λGp  with mean equal to 1 and variance 

equal to 0.5. 
• Irregularity hypothesis: The density histogram is 

compared to a Poisson law )()1( λPp  with mean equal 

to 1. 
• Bursting hypothesis: The density histogram is compared 

to a Poisson law )()2.0( λPp  with mean equal to 0.2. 

 
Figure 3: The three probability density functions used in the 

proposed method in the case of five bins 

These three reference PDF are shown in figure 3. Various 
tests can be considered for the goodness-of-fit between 

)(λd  and )(λxp , such as the Chi square, Kullback-Leibler 

or Kolmogorov-Smirnov tests [4]. However, the PDF are 
formed from a reduced number of samples. In addition, they 
can take values very close to zero. Thus, the Chi square and 
Kullback-Leibler tests are not considered in this paper. We 
propose the two following methods: 
• Method 1: The estimated density histogram )(λd  is 

compared to the reference PDF )(λxp  by means of a 

mathematical distance. The decision is made by choosing 
the hypothesis corresponding to the reference PDF that 
produces the smallest distance with )(λd . In this paper, 

we test the three following distances: the 1-norm, 2-norm 
and infinity-norm distances. 

• Method 2: The decision is made by comparing the 
cumulative distribution functions. As in method 1, the 
hypothesis corresponding to the reference PDF that 
produces the smallest distance is chosen. The same 
distances as in method 1 are tested. It should be noted 
that using the infinity-norm in that case can be related to 
the Kolmogorov-Smirnov test [4]. 

In the next section, we provide simulation results based on 
synthetic data and electrophysiological recordings. 
 

3. SIMULATION RESULTS 

3.1. Tests on synthetic data 
We first test the method on synthetic data. The generated 
point processes have the following form: 

=

=

k

i

iskt
1

)()( . (4) 

The process )(is  corresponds to the IEI process and is 

defined according to the desired activity: 
• Regular activity: 
In that case, the process )(is  is simulated according to a 

Gaussian PDF with mean μ  and variance 2σ . μ  is set to 

0.001, 0.01, 0.05, 0.08 or 0.1. 2σ  is set to 0.5, 1, 2, 5 or 10. 

• Irregular activity: 
The process )(ks  is generated as follows: 

100)()( ×= kPs(k) P μ  (5) 

where )()( kPP μ  is a Poisson distributed random number 

with mean μ . 

μ  is set to values varying from 1 to 3 with a step of 0.2. 

• Bursting activity: 
In that case, the inter-event intervals during a burst are 
chosen according to a Gaussian PDF with variance 1 and 
mean ranging from 1 to 10. In addition, the inter-burst 
intervals are chosen according to a Gaussian PDF with 
variance 100 and with mean ranging from 200 to 500. 

The length of the process )(kt  varies from 20 to 500 events. 

In each activity case, 100 realizations are generated for each 
configuration of the parameters. 
 

Table I: Percentage of detection on synthetic data 
using the 1-norm distance 

  Estimated activity 
  Regular Irregular Bursting 

Regular 99.08 0.92 0 
Irregular 15.18 84.80 0.02 Method 1 
Bursting 0 1.36 98.64 
Regular 99.08 0.92 0 
Irregular 16.05 83.95 0 Method 2 
Bursting 0 43.25 56.75 

 

Poisson pdf 
with mean 1 

Gaussian pdf 
with mean 1 

Poisson pdf 
with mean 0.2 
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Averaged percentages of decision are collected in table I, II 
and III. When using Method 1, results are similar with the 
three distances. When using Method 2, the 2-norm distance 
provides more reliable results. In addition, most of false 
decisions are made when analyzing an irregular activity. 
Indeed, in real cases, density histogram shapes 
corresponding to regular and irregular activities can be quite 
similar. Nevertheless, when using Method 1 with the 2-norm 
distance, the proposed approach allows to make a reliable 
decision on the kind of activity. 

Table II: Percentage of detection on synthetic data 
using the 2-norm distance 

  Estimated activity 
  Regular Irregular Bursting 

Regular 99.08 0.92 0 
Irregular 15.38 84.55 0.07 Method 1 
Bursting 0 1.36 98.64 
Regular 97.65 2.35 0 
Irregular 12.89 86.84 0.27 Method 2 
Bursting 0 2.85 97.15 

 
Table III: Percentage of detection on synthetic data 

using the infinity-norm distance 

  Estimated activity 
  Regular Irregular Bursting 

Regular 99.08 0.92 0 
Irregular 14.98 84.96 0.06 Method 1 
Bursting 0 4.66 95.34 
Regular 99.82 0.18 0 
Irregular 24.36 75.64 0 Method 2 
Bursting 0 19.08 80.92 

 
3.1. Tests on real data 
Neurosciences constitute an active framework and numerous 
researches aim at understanding the high brain functions 
such as memory, learning or decision making by analysing 
the pattern of neuronal discharge. These studies are strongly 
interdisciplinary since they imply aspects of system 
modelling or the processing of electrophysiological signals 
recorded in the nervous system. 
In this paper, we focus our attention on voluntary movement 
mechanisms and their related pathologies such as 
Parkinson’s disease or dystonia. Dystonia is characterized by 
involuntary movements and prolonged muscle contractions, 
resulting in twisting body motions and abnormal postures. 
The pathophysiology of dystonia remains largely unknown. 
Deep brain electrical stimulation (DBS) is a surgical 
operation which improves voluntary movement control of 
patients suffering from Parkinson’s disease and dystonia. 
However, the effects of DBS are not completely understood. 
In this context, we have tested the proposed method to 
analyze neuronal activity of dystonic hamsters during DBS. 
Deep brain structures, the so-called basal ganglia that are 
implicated in the pathophysiology of dystonia, have been 
both stimulated and recorded. Ninety-six recorded signals 

have been analysed before and during DBS. The proposed 
approach has been applied to estimate the ratio of regular, 
irregular and bursting neurons. As shown in figure 4, DBS 
seems to disturb the regular neuron activity which becomes 
mainly irregular. It should be noted that Kaneoke’s method 
only enables to distinguish regular and bursting neurons. 
Therefore, it can not be used for this analysis. 

 
Figure 4: Classification of neurons in the context of deep 

brain stimulation 

5. CONCLUSION 

We have presented in this paper a method to analyze the 
temporal distribution of events in stochastic point processes. 
The approach is based on the estimation of the density 
histogram. This latter is compared to reference density 
probability functions. We have carried out a comparative 
study between methods using various mathematical 
distances. Finally, we have exercised the method in the 
context of deep brain electrical stimulation in an animal 
model of dystonia. 
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